御承認願申請書

殿

製品名

工事名

年 月 日

(様式-1)

1、示方配合

画	2 1	合	粗骨材	自己	目 標	目 標	水 結	水粉体	空気量	単位粗				単位量	(kg/m³))		
ā	3 4	号	の最大	充てん	スラン	50cm	合材比	容積比		骨材絶	水	セメ	混和材	溶融	細骨材	粗骨材	混和	口剤
			寸法	性のラ	プフロ	フロー				体容積		ント		スラグ			高性能	その他
				ンク	_	時間					w	С	F		s	G	AE 減	の混和
			(mm)		(cm)	(秒)	(%)	(%)	(%)	(m ³ /m ³)		C			3	G	水剤	剤
	С		15	1	70±7.5	1~10	51.4	1.04	4.5 ± 1.5	0,310	180	350	168	232	561	828	3.50	2 — 3

配合設計条件

設計基準強度(材令14日) 40,0N/mm²

配 合 強 度 47.5N/mm²

骨材の最大寸法 15mm

セメントの密度 (g/cm³) 3.15±0.02 細骨材の粗粒率 2.80±0.15

混和材の密度 (g/cm³) 2.70±0.02 粗骨材の粗粒率 6.35±0.15

細骨材の密度 (g/cm³) 2.67±0.02 溶融スラグの粗粒率 2.75±0.20

粗骨材の密度 (g/cm³) 2.67±0.02 塩化物イオン量 0.30kg/m³以下

溶融スラグの密度 (g/cm³⁾ 2.82 ± 0.02 アルカリ骨材反応対策 無害な骨材を使用する

2. 材 料

セメント (製造会社名、種別)

混和材(製造会社名、銘柄、用途種類)

混和剤(製造会社名、銘柄、用途種類)

水 (地下水、上水道の別)

骨 材(製造会社名及び産地)

住友大阪セメント(株)岐阜工場、普通ポルトランドセメント

近江鉱業(株)、カルファインダー、石灰石微粉末

(株)竹本油脂、チューポールHP-11、高性能AE減水剤

地下水

細骨材 矢橋工業(株)、赤坂産

粗骨材 マルアイ石灰工業(株)、昼飯産

溶融スラグ細骨材 西濃環境整備組合、下座倉産

細骨材 砕砂 5mm以下

粗骨材 砕石 15mm ~ 5mm

溶融スラグ細骨材 5mm以下

3. コンクリート配合別製品名表

配合記号	設計基準強度	配合強度	コンクリート二次製品名	摘	要
			ベース付歩車道境界ブロック		
С	40.0 N/mm ²	47.5N/mm ²	可変勾配側溝本体及びふた		
			落ちふた式U形側溝本体及びふた		

セメント試験成績

2023 年 7 月度

								290		40 11111			
	種 類	普通ポ	ルトラ JIS R	ンドセメ 5210	ント	早強ポ	ルトラ JIS R	ンドセメ 5210	ント	高炉	セメ JIS R	ント:	B 種
_		770		式験成績				式験成績		IIO		試験成績	į
品 質		JIS 規格値	平均値	標準偏差	最大値 (最小値)	JIS 規格値	平均値	標準偏差	最大値 (最小値)	JIS 規格値	平均値	標準偏差	最大値 (最小値)
密	度 g/cm³		3.15 -				8.13				3.04		
比表面	面積 cm²/g	2500以上	3360 -	73		3300以上	4630	72		3000以上	3720	74	
	水 量 %		27.8				30.0			=====	29.4		
凝 結	始 発 h-min	60min以上	2-10 -		(1-45)	45min以上	1-49	+	(1-20)	60min以上	2-52		(2-10)
	終 結 h-min	10h以下	3-39		4-35	10h以下	3-00		3-35	10h以下	4-53	-	5-30
安	定 性	良	良	-		良	良		-	良	良		
	1d	-	-			10.0以上	27.7	1.35				-	
圧縮強さ	3d	12.5以上	31.0 ^	1.31		20.0以上	48.3	1.50		10.0以上	23.2	1.56	
N/mm²	7d	22.5以上	46.7 -	1.73		32.5以上	59.4	1.72		17.5以上	37.8	1.72	-
	28d	42.5以上	62.3 -	1.82		47.5以上	72.7	1.95		42.5以	63.4	1.85	-
水和熱	7d	_	331				-		-		+	-	
J/g	28d		384 -						-		1		
	酸化マグネシウム	5.0以下	1.24 ~		1.59	5.0以下	1.15		1.78	6.0以下	3.52		3.79
	三酸化硫黄	3.5以下	2.04 -		2.16	3.5以下	2.97		3.15	4.0以下	2.01	+	2.12
化学成分 %	強熱減量	5.0以下	2.56 -		2.77	5.0以下	1.56	-	1.77	5.0以下	1.84		2.02
	全アルカリ	0.75以下	0.57 /		0.60	0.75以下	0.51	-	0.54				1
	塩化物イオン	0.035以下	0.021		0.028	0.02以下	0.011		0.014		0.013	-	

備考:

高炉セメントB種

1.ベースセメントの全アルカリ(%): 0.57

2.高 炉 ス ラ グ の 分 量 (%) : 40~45

全アルカリの最大値のうち直近6ヶ月の最大の値

普通ポルトランドセメント(%): 0.63

早強ポルトランドセメント(%): 0.54

- 1. 試験方法は、JIS R 5201、JIS R 5202、JIS R 5203及びJIS R 5204による。なお、JIS R 5202は本体法による。
- 2. 安定性の試験成績は、パット法による。
- 3.28dの圧縮強さ及び水和熱は、前月度の値を示す。

お問い合わせその他ご連絡先

住友大阪セメント株式会社 名古屋支店

〒450-0003 名古屋市中村区名駅南2丁目14番19号 (住友生命名古屋ビル3F)

TEL(052)566-3203 静岡営業所 TEL(054)253-7108

■骨材試験成績書■

東海南事ブロック工業株式会社・大野工場

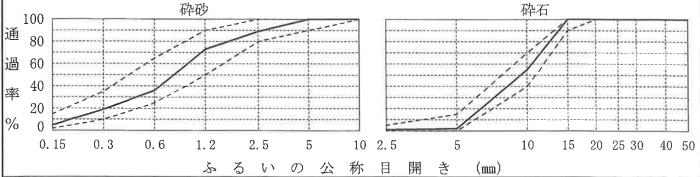
岐阜県揖斐郡大野町本庄 TEL 0585(35)2031 FAX 0585(35)2522

 検
 印

 IQC
 室
 長

 試験係

氯


令和 5年 7月度

名	赤坂區	6 細骨材						
		砕砂						
(mm)		5						
	結果	規格値	結果	規格値	結果	規格値	結果	規格値
(g/cm^3)	2.67	2.67 ± 0.02	2.67	2.67 ± 0.02				
(g/cm^3)	2.64	2.5以上	2, 65	2.5以上				
(%)	0.97	3.0以下	0.81	3.0以下				
(kg/ℓ)								
	57.8	54以上						
	3.0		0.3	0.5 ± 0.5				
							1	
/								
(%)	1.3	10以下	0.7	12以下				
			24 7	40以下				
	Α	無害である						
- 1-TH 460/	**	J L C 0.7 0	- 11	M L (0) 0				
	你 (mm) 目 (g/cm³) (g/cm³) (%)	(mm) 目 結果 (g/cm³) 2.67 (g/cm³) 2.64 (%) (%) (%) 57.8 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	株子 株子 株子 株子 大子 株子 大子 大子	株 株 株 株 株 株 株 株 株 株	株理学院 株理学院	株理	株理	株理

ふるい分け試験 (通過率%)

骨材名称	砕	:砂	砕	石				
ふるい(mm)	通過率	規格値	通過率	規格値	通過率	規格値	通過率	規格値
50			100	100-100				
40			100	100-100				
30			100	100-100				
25			100	100-100				
20			100	100-100				
15			100	100-90				
10	100	100-100	55	70- 40				
5	100	100-90	2	15- 0				
2. 5	89	100-80	1	5- 0				
1.2	73	90- 50						
0.6	36	65-25						
0.3	19	35- 10					-	
0.15	5	15- 2						
粗粒率	2, 78	2.80 ± 0.15	6. 42	6.35 ± 0.15				

備考:

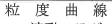
材 試 験 成 績 書

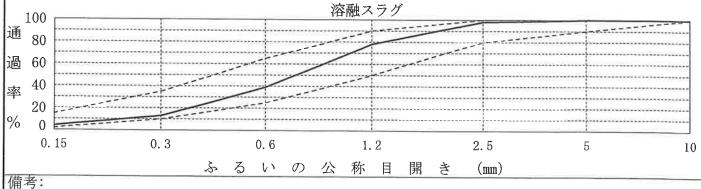
東海商事ブロック工業株式会社・大野工場

IQC室 長試験係 岐阜県揖斐郡大野町本庄

TEL 0585 (35) 2031 FAX 0585 (35) 2522

検 印 欄




令和 5年 7月度

						11111 0000	(00) 0000	The same of the sa	
産地品		西濃産	溶融スラグ						
骨材名	称	溶	独スラグ						
最大寸法	÷ (mm)		5						
試験項	[]	結果	規格値	結果	規格値	結果	規格値	結果	規格値
表乾密度	(g/cm³)	2.83	2.82 ± 0.02			1,777		1000	770111111111111111111111111111111111111
絶乾密度	(g/cm^3)	2.82	2.50以上						
吸水率	(%)	0.24	3.0以下						
単位容積質量	(kg/ℓ)								
粒形判定実積率	(%)	54.6	53.0以上						
微粒分量	(%)	1.9	5.0以下						1
粘土塊量	(%)								
軟石量	(%)								
有機不純物	(,,,								
安定性	(%)	0.2	10.0以下						
塩化物量	(%)		10,000						
すりへり減量	(%)								
アルカリ骨材反	広性試験	A	無害である						
	W. T. ITTH. AUDIC	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						

ふるい分け試験(通過率%)

骨材名称	溶融	スラグ						
ふるい(mm)	通過率	規格値	通過率	規格値	通過率	規格値	通過率	規格値
50								.,,
40		1 1						
30								
25		1						
20		1						
15								
10	100	100-100						
5	100	100- 90						
2.5	98	100- 80						
1.2	78	90- 50						
0.6	39	65- 25						
0.3	13	35- 10						
0. 15	4	15- 2						
Jem Jat								
粗粒率	2, 68	$[2.75\pm0.20]$						

コンクリート用容融スラグ細骨材試験成績書

Q C 試驗室長 担当者 言

環境安全品質試験 (いずれかに〇印)

西濃環境整備組合 製造工場

令和5年6

令和 5 年 製造年月探取年月

4月20日、25日、5月3日

:0504 - 0505ロット番号

搬出ヤード名:No.3

試験実施事業者・責任者(検液の調整及び分析)

	俗配イフグ育	将棚イフノ宵外畝科で美畑	Section 1			(一因) 取中	岐早県公然衛生棟宜アノクー 深境訂重工	対質ピノダー	
\ \bar{b}	西西			7 3 4	就驗	項目		# 1 0 m	
K N	· ·	カドミウム	粉	六価クロム	い素	水銀	トレン	ふつ素	ほう素
松出量	試験結果	0.0003未満√	0.005未満~	0.04未満ノ	0.005未満~	0:0005未満人	0.002未満ノ	0.4 /	0.02未満ノ
mg/L	環境安全品質基準	0.01以下	0.01以下	0.05以下	0.01以下	0.0005以下	0.01以下	0.8以下	1以下
含有量	試験結果	3未満 /	4 ~	2未満 ノ	1未満 /	0.05未満ノ	3未満 ノ	/ 061	280 7
mg/kg	環境安全品質基準	150以下	150以下	250以下	150以下	15以下	150以下	4000以下	4000以下

			4. 24. 17	10.77			The strate at		F	A the rate			中山水水	ノン上に書
	2 2 2 1		化于灰红%	27%			强化物車	してアンシングスが1年 む	Ī	西町和	阳水树	中作并	ALTO HIT	一般をより
製品の呼び方	酸化カルシウム (CaOとして)		会 (S として)		三酸化硫黄 (SO3として)	金属鉄®)	(NaClとして) %	化学法 モルタル バー法	迅速法	度 g/cii	%	%	※ 	黑%
MS 5	34	>	0.14 /		0.1未満 ✓	0.4	7、学生200.0	A - -		2.87	0.22	0.2 ~	54.4.	2.17
規格値	45.0以下		2.0以下		0.5以下	1.0以下	1.0以下 0.04以下	判定結果をAXはBと 記入する。		- 5以上	2.5以上 3.0以下 1.0以下	10以下	53以上	7.0 (5.0) b) 以下
		\$	いを通る	ふるいを通るものの質量分率	量分率。	%	-	1 14 19	膨張率	1%1		ポップア	ポップアウトの確認 d)	
製品の呼び方	10mm	5 2	2.5mm	1.2mm	0.6mm	0.3mm	0.15min	粗粒拳. c)	%	20	核あり		核なし	判定困難
MS 5	100 1	. 1007	> 66 .	81 <	39.	14 🗸	بې ﴿	2.62 \ (2.69)	-2 /	`	~ 風 ~		0個 /	〉 風 ~
規格値	100 90	~100 80)~100	50~90	90~100 80~100 50~90 25~65	10~35	2~15 概3	製造業者と購入者とが 協議によって定めた粗 粒率に対して±0.20の 範囲のものでなければ ならない。	24時間経過後に 膨張があってはな らない。		ポップ・プリー 地元:ポッ 核めの:ユ 核なし:ニ 判(応田)	ポップアウトがあっ てはならない 判定:ポップアウトではない 核あり:ポップアウト 核なし:ポップアウト 核なし:ポップアウトではない 判定困難:ポップアウトではな	ボップアウトがあってはならない。 判定:ポップアウトではない 核あり:ポップアウト 核なし:ポップアウト 核なし:ポップアウトではない 判定困難:ポップアウトではない	I

附属書Bによる場合は、試験値の後に、「附属書B"と記述する。 括弧内は、コンクリートの表面がすり減り作用を受ける場合である。 括弧内は、購入契約時に定められた協議値を記入する。

アルカリシリカ反応性試験実施日:令和5年5月1日~今和5年5月2日(令和5年4月16日採取)ポップアウト試験実施日:令和5年4月20日~今和5年5月2日(令和5年4月16日採取)

2023年 7月~2023年 12月度 コンクリート用化学混和剤(JIS A 6204)試験結果報告書

T 501-0533 (78940)

岐阜県揖斐郡大野町本庄859-

- Maria

東海商事ブロック工業㈱

御中

種 類 高性能AE減水剤 標準形(I種)

商品名 チューポールHP-11

〒443-86 万海鱼岛 計畫 市港中 2 番 5 号 竹本籍擔鄰武会社 2 (0 3 3

I Q C 試験室長 担当者 合・否

1. コンクリートの試験結果

	項	B		JIS A 6204による規定値	形式評価試験値	性能確認試験値
	減 水	率	%	18以上	1 9	19 -
フレッ	ブリーディンク	ブ量の比	%	60以下	1 9	
シュ	ブリーディンク	ブ量の差	cm³/cm²	-	5 <u>~</u>	' <u>s</u>
ココン	凝結時間の差	始	発	- 6 0 ~ + 9 0	+ 1 0	+10 /
ク	分	終	結	-60~+90	± 0	± 0 /
リー	奴吐亦ル具	スラン	プ cm	6.0以下	4. 5	5.0 /
F	経時変化量	空気	量 %	±1.5以内	-0.7	-0.8 ∞
735		材齢	1日	- :	-	-
硬化		材齢2日	(5℃)	=	-	2
コン	圧縮強度比%	材齢	7 日	125以上	152	152
クリ	,,,	材齢	28日	115以上	1 3 6	1 3 5
l į	長 さ 変	化 比	%	110以下	9 7	× 1=1
Ľ	凍 結 融 解 に (相 対 動 弾		抗 性 %)	60以上	9 0	: :

注記1 1 m 当たりの化学混和剤の使用量 形式評価試験 2.80 kg/m 性能確認試験 2.80 kg/m

注記2 性能確認試験は6か月ごとに1回実施し、この表に表示している試験値は、 2023年 3月の試験結果である。

ただし,圧縮強度の性能確認試験は1年に1回実施し,この表に表示している試験値は, 2022 年 10 月の試験結果である。

注記3 この表に表示している形式評価試験は、 2020年 9月に 竹本油脂株式会社 で実施した試験結果である。

2 塩化物イオン (CLT) 畳及び全アルカリ畳

101	27 1 . 2 .	() 重次 工	// / <u>=</u>						
1倍	п	JIS A6204	117.45.25.45.45.45.45.45.45.45.45.45.45.45.45.45		性能確認試験				
項	B	による規定値	形式評価試験値	化学混和剤中の 含 有 量	1 m ³ 当たりの 化学混和剤の使用量	試	験	値	
									ĺ
塩化物イオ	ン(Cl ⁻)量	0.0 2 kg/㎡以下	0.00 kg/m²	0.00%	2.80 kg/m³	C	0.00) kg/m³	١,
全アル	カリ量	0.30 kg/m³以下	0.05 kg/m²	1.3%	2.80 kg/m²	(0.04	4 kg/m³	

注記1 性能確認試験は6か月ごとに1回実施し、この表に表示している試験値は、 2023年 3月の試験結果である。

注記2 この表に表示している形式評価試験は、 2020年 9月に 竹本油脂株式会社 で実施した試験結果である。

3.チューポールHP-11の品質

化学混和剂	中の含有量	密度(g/cri	1,20℃)
塩化物イオン(C1-)量	全アルカリ量	規 格 値	試験値
0.00 %	1.3 %	1.03 ~ 1.11	1.074

注 記 この表に表示している試験値は, 2023 年 3 月の試験結果である。

コンクリート混和材石灰石微粉末検査成績表

東海商事ブロック工業株式会社 御中

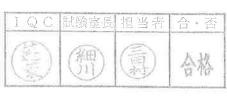
2023年 7月度

近江鉱業株式会社

種類 : 石灰石微粉末

品名 : カルファインダー90

検 査 項	目	品質規格	成績
比表面積	(cm^2/g)	5000 ± 500	5100 -
圧縮強度比 (%)	7 d	100 以上	126
江州以及足 (70)	28 d	100 以上	118
CaCO ₃	(%)	90 以上	98. 4
MgO	(%)	5 以下	0.50
S0 ₃	(%)	0.5 以下	0.1 未満 ⁄
$A1_{2}0_{3}$	(%)	1.0 以下	0.07
湿分	(%)	1.0 以下	0.06
メチレンブルー吸着量	(mg/g)	1.0 以下	0. 23
全アルカリ量	(%)	0.02 以下	0.01
塩化物イオン	(%)	0.02 以下	0.001
密度	(g/cm^3)	2.6 以上	2.71


社外品質検査項目

・ 圧縮強度比: 2023年6月の試験報告書より

・ メチレンブル-吸着量: 2023年6月の試験報告書より

・ 全アルカリ量: 2023年6月の試験報告書より

営業 TEL: 0749-55-2013 FAX: 0749-55-0641

試験成績書

No.22MC085

令和 4年12月22日

杉山金網株式会社 御中

出荷日 令和 4年12月22日

出荷質量 4,800 Kg

日本工業規格表示認証番号TC0408088 大阪鋼業株式会社三重工場 三重県準市美里町家所4527 TEL (059) 279-3737

規格 JIS G 3532 鉄線

種類記号 コンクリート用鉄線 (SWM-P) 線 径 2.60 mm 使用線材 軟鋼線材 JIS G 3505 SWRM6適合材

試験	実測寸法	引張荷重	引張強さ	絞り		
項目	mm	N	N/mm ²	%	曲げ性	外観
規格値						, , , , , ,
No.	± 0.06		540以上	30以上		
1	2. 57	4, 100	791	5 2 /	good*	good-
2	2. 57	4,040	779	56	good/	good
3						

材料の化学成分

%

チャーシ゛N o	С	S i	M n	P	S
	×100	×100	× 100	×1000	×1000
2 B 6 7 2 2	8	1 6	3 9	1 7	1 5
2 A 2 5 3 1	7	1 5	3 0	1 5	9

04. 12. 14	1201	04. 12. 15	1105		
	1202		1106		
04. 12. 15	1101		1201		
	1102		1202		
	1103		1203		
	1104		1204		

試 験 成 績 書

No. 23M5021

令和 5年 5月11日

杉山金網株式会社 御中

日本工業規格表示認証番号TC0408088 大阪鋼業株式会社三重工場

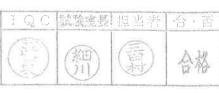
三重県津市美里町家所4527 TEL(059) 279-3737

出荷日 令和 5年 5月11日

出荷質量 9,600 Kg

規格 JIS G 3532 鉄線

種類記号	コンクリート用鉄線 (SWM-P) 線 径 3.20 mm
使用線材	軟鋼線材 JIS G 3505 SWRM6適合材


試験	実測寸法	引張荷重	引張強さ	絞り		
項目	mm	N	N / mm^2	%	曲げ性	外 観
規格値						
No.	±0.08		540以上	30以上		
1	3.18	5,840	7 3 6 -	60	good	good,
2	3.17	5, 560	705/	59 /	good-	good
3	3.17/	5, 420	687	59/	good-	good-

材料の化学成分

%

チャーシ゛No.	С	Si	M n	P	S
	×100	×100	×100	×1000	×1000
3 A 7 1 7 1	6	1 4	3 1	2 0	1 6
3 C 2 5 3 8	6	1 4	2 9	1 1	1 6
3 C 2 7 3 2	7	1 5	3 1	1 7	8

05. 04. 10	1201	05.04.28	1202		
	1202		1203		
05.04.20	1101		1204		
	1102	05. 05. 08	1101		
	1103		1102		
05. 04. 28	1201		1103		

試 験 成 績 書

No. 23M5038

令和 5年 5月16日

杉山金網株式会社 御中

日本工業規格表示認証番号TC0408088 大阪鋼業株式会社三重工場

三重県津市美里町家所4527

TEL (059) 279-3737

出荷日 令和 5年 5月16日

出荷質量 12,800 Kg

JIS G 3532 鉄線 規格

種類記号 コンクリート用鉄線 (SWM-P) 線 径 4. 00 mm 使用線材 軟鋼線材 JIS G 3505 SWRM6適合材

試験	実測寸法	引張荷重	引張強さ	絞り		
項目	mm	N	N / mm^2	%	曲げ性	外観
規格値					V	
No.	± 0.08		540以上	30以上		
1	3. 98	8,020	645 ?	61/	good-	good
2	3. 97	7,800	630 /	6 7	good/	good-
3						

材料の化学成分

%

チャーシ゛N o .	С	Si	Mn	P	S
	× 100	×100	×100	× 1000	×1000
3 C 2 5 3 8	- 6	1 4	2 9	1 1	1 6
3 C 2 7 3 2	7	1 5	3 1	1 7	8
302132		1 0	3.1	1 /	

05.04.25	1203	05. 05. 10	1104	05. 05. 11	1102	
05.04.26	1202		1201		1103	
	1203		1202		1104	
05.05.10	1101		1203		1201	
	1102		1204			Į.
	1103	05. 05. 11	1101			

試験成績書

No.23M5039

令和 5年 5月17日

杉山金網株式会社 御中

日本工業規格表示認証書号TC0408088 大阪鋼業株式会社三重工場

三重県津市美里町家所 1527 TEL (059) 279 3737

規格 JIS G 3532 鉄線

種	類記号	コンクリート用鉄線(SWMーP)	線	径	5.00	mm
使	用線材	軟鋼線材 JIS G 3505 SWRM12適合材				

試験	実 測 寸 法	引 張 荷 重	引張強さ	絞り		
項目	mni	N	N / mm^2	%	曲げ性	外観
規格値						1
No.	±0,10		540以上	30以上		
111	4.96-	12, 250	6 3 4 /	58/	good-	good
2	4. 97	12,500	645/	58/	good-	good/
3						

材料の化学成分

%

チャーシ゛N o .	С	S i	M n	P	S
	×100	×100	×100	×1000	×1000
3 A 7 O 2 2	1 2	=	3 4	1 5	1 0
3 B 2 8 2 9	1 2	=	3 5	1 5	1 2

05.04.20	3201	05.04.21	3101	05.04.21	3201	
	3202		3102		3202	
	3203		3103		3203	
	3204		3104		3204	
	3205		3105			
	3206		3106			

試 験 成 績

No. 23M5019

令和 5年 5月10日

杉山金網株式会社 御中

大阪鋼業株式会社三重工場

日本工業規格表示認証番号100408088

三重県津市美里町家所4527 TE (059) 279-3737

出荷日 令和 5年 5月10日

出荷質量 12,800 Кg

> 鉄線 規格 JIS G 3532

種類記号	コンクリート用鉄線 (SWM-P) 線 径 6.00 mm
使用線材	軟鋼線材 JIS G 3505 SWRM15適合材

試験	実測寸法	引 張 荷 重	引張強さ	絞り		
項目	mm	N	N/mm²	%	曲げ性	外 観
規格値						
No.	± 0.10		540以上	30以上		
1	5.97	17, 750	6 3 4 /	6 3	good/	good
2	5. 97	17,500	625	6 2	good	good
3	5. 97/	17,650	631/	62/	good/	good/

材料の化学成分

%

チャーシ゛N o .	С	S i	M n	P	S
	×100	× 100	× 100	×1000	×1000
2 B 0 3 4 3	1 4	2 1	4 4	1 1	1 2
3 B 2 7 8 5	1 5	2 0	4 2	1 5	1 6
3 A 6 9 9 8	1 4	2 0	4 2	1 6	1 6

出荷品製造器号 (製造年月月 | 製造器号)

山門即即級及	旦省ケー	製 道 牛 月 日 型	是宣音方)			
05. 04. 12	3101	05. 04. 18	3203	05. 04. 19	3105	
	3102		3204		3106	
	3103	05.04.19	3101		3201	
	3104		3102	1	3202	
05.04.18	3201		3103			
	3202		3104			

INSPECTION CERTIFICATE

删版 恶 訓 蒼 検 Ź

注文No.: 606133460A4

Contract No. Order's No.

论文者關合書号。

伊藤忠丸紅住商テクノスチール株式会社 異形棒鋼 (パーインコイル) 杉山金橋株式会社 JIS G 3112 64 箱 川 文 雅: 11 米 米 1

品製

Specification

Customer Shipper

Commod; ty Supplier

拠

樂

Destination

工事名称

JIS No. JIS製版審集: QA0507003

Ship No. 影響

1-1-5, NISHIJIMA, NISHIYODOGAWA-KU, OSAKA. JAPAN 大阪市西淀川区西島 1 丁目 1 巻 2 号

合同製鐵株式会社大阪製造所

OSAKA WORKS

GODO STEEL, LTD.

Certificate No. **証明書番号** : 1020230500939 Date 発行日 : 2023/05/11 処理コード : 0511 69469

	4	***	II.	2	Chemi	Chemical Compo	E	化学成分(%)	公(%)						
1	T W	Anamery 真 数	Mass Kg庫	SA 番	0. C Si) X100 X100) Max. 27 Max. 55 Ma	Si Mn 100 X100 X. 55 Max. 150	X (a)	P S S Nax S0 (4.50)							
9 0		20	20, 321	742079	\ S	19 ~ 66	22	4.							
白		20	20, 321												T
d	Charge No	Tensile Test	引張試験(GL=80)	31=80)	Bend Test	Hardness Mardness	S 10	Find of F	n Na						
,抵	· · · · · · · · · · · · · · · · · · ·	Y. P. 降伏点 又は0.28耐力	T. S. 引强强さ	R. A. #2	An										201111
		Min. 295	2 440 N/mm2 Min. 5 - 600 Min. 1	7. % 16 %	1. 5D 180	° 08									
9 0	742079	348 /	496 ~	30 -	~ Q0005										
										Jeons	のの「関数離り	M 加 知	Kil Kil		
			V/IC=1(=								(Mg)		() ()	hon -v-M o	
															\neg

COUTTONERGREATER

#E HEREBY CERTIFY THAT THE MATERIAL DESCRIBED HEREIN HAS BEEN WADE IN ACCORDANCE WITH THE RULES OF THE CONTRACT. 上記注文品は御指定の規格または仕様に従って製造され、その要求事項を満足していることを証明します。

米谷 織門 華川 一門 発行作月日 〒 573-0004 大阪府枚方市中宮大池3 厂目1番地1号 枚方事業所 品質管理課 品質管理責任者 氏名 TEL 072-849-3221 FAX 072-849-3339 N 共英製鋼株式会社 証明書番号 0009720 今 今 (HEX 試驗每長 調に TOUGH-CON (977) 1 0 C 1 JIK 認証番号 TC0507036 鋼材検査証明書 種類の記号 SD295 規 格 JIS G3112 品 名 異形棒鋼 出荷年月日 2023/5/20 契約先:共英産業株式会社 スギト鋼材株式会社 杉山金網株式会社

2305885-00 契約番号

	Cen	× 100	ă	36				 				
		×	1.4	573			 	 				
-							 	 				 -
									_			 -
	0	000										
(3)	⊙ <u>M</u>	000 × 10	*	20			 	 				
1 (%)	>	01 × 00	1	0						-		
成分	C	×100 ×100 ×100 ×1000×1000 ×100 ×100 ×10		1.9			 	 				
验.	7.	X 10	1	01								
Ą	Ou	0 × 10(9	- 26			 				_	
	v,	0 × 100	50 以下	36 -		i i .						
	d	× 1000	50 以下	30 -								
	M 11	× 100	150 以下	- 89								
	 	× 100	55 以下	7 91								
	Ú	×100	27 7.22	- C								14
加げ試験	曲げ角度	内侧半径	180° 1, 5D	(1000)								1 5+Mo/4+V/
	音 交		5 元 元	29 ~								40+Cr/
25/	降伏側の	79 4误	i.									C _{rq} = C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
長 試 臉	路伏比		,	7.1								 C+Mn/6+
引 張	引張強さ		440 - 600	502 -								
		Xに耐力 N・mi	295 以上	358 /								以素
	1	河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河河			26, 880 26, 880							26, 880
	į	真水 (水		6, 000	6, 000							6, 000
		鋼番		58207	小計中							ine 40
	,	長 で (E		8.000					1.0			
	压7.7名]) • &	· ·	010								

上記鋼材は規定の試験を行い、これに合格したことを証明致します。

(i) (Mat) 0 (MAK 鋼材檢查証明書

出荷年月日 2023/5/20

契約先:共英産業株式会社

2305885-002 契約番号

スギト鋼材株式会社 杉山金網株式会社

発行年月日

2023/5/20

証明書番号

00097233

品質管理責任者 氏名

〒573-0004 大阪府枚方市中宮大池3丁月1番地1号

★共英製鋼株式会社

認証番号 TC0507036

TEL 072-849-3221 FAX 072-849-3339

TOUGH-CON (972)

種類の記号 SD295

異形棒鋼

枚方事業所 品質管理課

	Cen	× 100	70	35	35												
							-										
												_					
	Mo	000		91	°C											-	
(%)	>	1000 × 1	1	0		-									_		
少	Cr	$\times 100 \times 1000 \times 1000$	1	13	19											1	
: 庞	 	× 100	î	10	=												
化拳	Cu		1	33	24		-										
	S	$\times 100 \times 1000 \times 1000 \times 100$	50 以下	34 ~	37 /												
	d	0001×	50 以下	27-	30 /												
	Мn		150 以下		73/												
	 	× 100	55 大		20-												
SEC.	C	× 100	27 以下		177											- 1	1/14
曲げ試験	曲げ角度	内側卡径	180° 1.5D		C00D ~											M / W 1	5+M0/4+
	毎び	%	16 以上	26 ~	26											0	/40+Cr/
験	降伏棚のハボみ南	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	888														$C_{eq} = C + Mn / 6 + Si / 24 + Ni / 40 + Ci / 5 + Mo / 4 + V / 14$
温温	降伏比	%	ų	72	73									ŝ			: C+Mn/6
引張	引張強さ	N/mm²	440 - 600	493~	1917												炭素当属 Ced=
	降伏点 又は耐力	N/mil	295 以上	357 -	357 -											-	所派
	西雪		1			25, 056	25, 056									0	25, 056
	· 操	X (\ \ \ \\ \		1, 500	2, 100	3, 600	3, 600									000	3, 600
	ļ	憲		58235	58236	小部	급										福祉
	tt M			7.000													
	呼び名	· 汝	2	D13													

上記鋼材は規定の試験を行い、これに合格したことを証明致します。

大谷 枚方事業所 品質管理課 無明書番号 N 共英製鋼株式会社 品質管理責任者 氏名 595947 合 試験強長 哲学学 (加) 0 (股份 認証番号 TC0507036 鋼材檢查証明書 JIS G3112 品 名 異形棒鋼 出荷年月日 2022/4/25 契約先:スギト鋼材株式会社

TOUGH-CON (\$732)

杉山金網株式会社

1-2-04-885-002 契約番号

種類の記号 SD295

発行年月日 2022/4/25

〒573-0004 大阪府校方市中宮大池3丁月1番地1号 TEL 072 (849) 3221 FAX 072 (849) 3339

	Con	×100	1	38	36	Ö	38	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55									
	o M	× 1000	E.	24	22	c c	92	2									
(%)	>	$\times 100 \times 1000 \times 1000$	1	2	_		000	~									
长之	Cr		į.	2.2	24		30	36									
学成	X 	× 100	ľ	91	0		10	0									
77	Cu	$\times 100 \times 1000 \times 1000 \times 100$),		29		29										
	S	0×1000	50 以下	37 ~			34										
	Д.	X 1000	50 以下	- 88 -			30 /										
	Mn		150 以下	- 80 -			78				 _						
	S II	× 100	55		17 >		16 ~										
450	C)	× 100	27 以下		18		17				_						V/14
曲げ試験	曲げ角度	内侧半径	180° 1.5D	- (100D	G00D		C00D	C00D /									5+Mo/4+
	毎び	%	16 以上	26~	23/		25 ~	24 /									40+Cr/
験	降伏棚の7/ボみ度	(, ≥∈	1														Cen = C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
張就	N41	%	1	73	73		73	73									: C+Mn/6
F1 B	10	N/mm²	440 - 600	528 ~	484		485 /	495 /									炭素当量 Cen=
	降伏点マは耐力	N/mm²	795 以上	388	352~		354~	>198									張
	印	(K)				5, 920			18, 720	24, 640							24, 640
	立	K (+)		9	394	400	400	800	1, 200	1. 600							1, 600
		調果		52732	54440	小哥	54441	54442	小計	击							石字
	т Ш) (E		9. 500			10,000										
		寸法		D16													

上記鋼材は規定の試験を行い、これに合格したことを証明致します。 1, 600 24, 640 合字

QC 試験室長 担当者 合・否 多

1/2頁

報告書No.

年4月3日 2 壮 邻

骨材のアルカリシリカ反応性試験報告書

御田 矢橋工業 株式会社

建部技第202号岐阜県美港市蘇東市的海地の7岐阜県生コングルーイ三洋組合・東、東、南岸縣場(南岸縣場)市上洋(16716)781-2922 中洋(16716)781-248 東縣署名者

ご依頼のありました骨材の試験結果を以下のとおり報告致します。

令和5年3月2日	230302A151	杂砂(細骨材)	骨材のアルカリシリカ反応性試験 (化学法)	矢橋工業 株式会社 (岐阜県大垣市南市橋町1753)
受付年月日	識別番号	骨材名称	試験項目	麗 谷 名 (年) 日)

注)本報告審は、試験場に持ち込まれた本書中に記載の試料についてのみ有効です。 尚、岐阜県生コンクリート工業組合中濃試験場の文書による承認なしでは、完全な複製を除き、報告審の一部分のみ尚、岐阜県生コンクリート工業組合中濃試験場の文書による承認なしでは、完全な複製を除き、報告審の一部分のみ を複製する事を禁じます。

報告書No. | 20230403151

大垣市赤坂町地内 占 唧 卧

矢橋工業 株式会社

ш 令和5年3月1 Ш 取年月

媃

黨

你砂(細雪材) 教

ल्ब 擂 癰

令和5年3月14日 Ш 法 摇 大 胀 盤 驗

擂

塩酸 (Hcl) 滴定法 吸光光度法 11S A 1145 : 2022 骨材のアルカリシリカ反応性試験方法 アルカリ濃度減少量

(化学社)

令和5年3月15日

溶解シリカ量

化学室 中機試験場 岐阜県生コンクリート工業組合 d (岐阜県美濃市極楽寺464番地の7)

账 뺬 畿 塩

試驗実施場所 (住所)

80℃ 24時間 (mmo 1/L) 溶解シリカ量 (mg/L)1.000 3, 538 1 反応条件: S ¤ 希釈 R C 試料量 : 25.00 (g) アルカリ濃度減少量 (mmo1/L) V 2 (mL) 19, 30 19.60 RC (JE) 20 20 繰返し 平均值

 $-\times$ (V 3-V 2) \times 1000 20×0.05×F Rc=

V3 (m1) :

いだい

(0.05mol/L 抽駁) 分取量 (ml) 滴定量 (0.05mol/L 塩酸) 空試験滴定量 (0.05mol/L 塩 0.05mol/L 塩酸ファクター

28.09 $20 \times n \times A \times$ Sc=

mg/L) (S i 検量線から求めたけい素量 . . Ą けいだい

一判定基準-無 細

Scが10mmo1/L 以上で、Rcが100mmo1/L 未満の範囲で ScがRc未満と**なる場合。** Scが10mmo1/L **未満で、**Rcが100mmo1/L 未満の場合。 a)

Scが10mmol/L 以上で、Rcが700mmol/L 未満の範囲でScがRc以上となる場合。

無害でない

Rcが700mmol/L 以上の場合。 判定しない 注)採取場所、採取者名、採取年月日、骨材名称、備考は、ご依頼者の申し出により記入しました。

念 间 (製)

1/2頁

報告書No. 20230403156

Ш

5 皿

4 和 5 年

⟨F

御中

マルアイ石灰工業株式会社

骨材のアルカリシリカ反応性試験報告書

連部 技 第 202 号 岐阜県美濃市極楽寺444番地の7 岐阜県生コングナー 高工業組合 中、海、高、路、場、野下は14(874) 53-2392 Rat 14(8) 185 (1873) 5-1248 承認署名者 場長 武井 瀬 高

ご依頼のありました骨材の試験結果を以下のとおり報告致します。

令和5年3月9日	230309A152	砕石 1505	骨材のアルカリシリカ反応性試験 (化学法)	マルアイ石灰工業株式会社 (岐阜県大垣市赤坂町3851番地)
受付年月日	識別番号	肾材名務	試験項目	顧客名務(住所)

注)本報告審は、試験場に待ち込まれた本審中に記載の試料についてのみ有効です。 尚、岐阜県生コンクリート工業組合中議試験場の文書による承認なじでは、完全な複製を除き、報告審の一部分のみ を複製する事を禁じます

|報告書No. | 20230403156

岐阜県大垣市昼飯地内 ⊩ 卧

マルアイ石灰工業株式会社 名 抛 卧

Ш 令和5年3月7 Ш 採取年月

碎石 1505 於 绐 iii M 令和5年3月23 Ш

魯

(化学法) 塩酸 (Hcl) 滴定法 JIS A 1145 : 2022 骨材のアルカリシリカ反応性試験方法 今和5年3月24日 浜 試驗実施 大

(Rc) アルカリ濃度減少量

(Sc) 溶解シリカ量

吸光光度法

中濃試験場内 化学室

試験実施場所

眯 都 戀 加

80% 24時間 (mmo 1/L) 溶解シリカ量 A (mg/L) 1.000 398 498 1, 494 10 S 反応条件 希釈 n 16 00 : 25.00 (g) アルカリ濃度減少量 (mmo1/L) (IIII) 19.42 19, 30 就均量 Ы С (III) 20 平均值 繰返し

 $- \times (V_3 - V_2) \times 1000$ $20 \times 0.05 \times F$

19,66

V3 (ml) :

R c =

分取量 (ml) 液定量 (0.05m01/L 塩酸) 空試験液定量 (0.05m01/L 塩酸) 0.05m01/L 塩酸ファクター V 2 2 V 3 V 3 どこと

28, 09 $20\times n \times A \times$ c ==

mg/L) (S) 検量線から求めたけい素量 ď ここと

删 淮 アルカリシリカ反応性の判定

一判定基準-無 需

a) Scが10mmo1/L 以上で、Rcが700mmo1/L 未満の範囲で Scが3Rc未満と**なる場合。** b) Scが10mmo1/L 未**満で、**Rcが700mmo1/L 未満の場合。

Schilumol/L 以上で、Rcが700mmol/L 未満の範囲で SchiRc以上となる場合。 無害でない

Rcが700mo1/L 以上の場合。 判定しない 注)採取場所、採取者名、採取年月日、骨材名称は、ご依頼者の申し出により記入しました。

丰 續 坐 鬱 扯

東海技物第 23710060-001 号(1/2)

颒 一般財団法人 岐阜県公衆衛生検査センター

						182		
一般財団法人 岐阜県公衆衛生検査センター	岐阜県岐阜市曙町4-6	令和5年6月29日	容融スラグ 23Z00061		西濃環境保全センター	令和5年6月22日	一般財団法人 岐阜県公衆衛生検査センター	
依頼者名称	依頼者住所	受付年月日	骨材名称	骨材産地	探取場所	試料探取日	試料採取者	件名

下記項目の試験結果について別紙のとおり報告します。

令和5年7月18日

000

严 飜 拡 1. 骨材のアルカリシリカ反応性試験(化学法) (JIS A 1145: 2022)

試験実施場所:一般財団法人 東海技術センター(愛知県瀬戸市坂上町420番地1)

3. この試験成績物の一部分を複製するときは、審面によって当試験所の承認を得るようにして下さい。 2. 本結果は、ご依頼者が採取し提供された試料に対して適用するものである。

溶融スラグ 23200061 骨枯名称

型 骨材産

西濃環境保全センタ、 探取場所

令和 5年 6月 22日 試料採取日 一般財団法人 岐阜県公衆衛生検査センタ 試料採取者

令和 5年 7月 10日 試験実施日

JIS A 1145 뇄 中 **默**

塩酸(HCI)滴定法 1. アルカリ機度減少量(Rc)

溶解シリカ量(Sc)

原子吸光光度法

黙繫結果

反応条件: 80°C 24時間 試料量: 25.00 (g)

	711	アルカリ濃度減少量	中国		溶解シリカ量	
繰返し		Rc (mmol/L)			Sc (mmol/L)	
	V1 (m1)	V2 (m1)	Rc	С	A (mg/L)	So
	20	19.47	13	1	1.4	
2	20	19.42	.15	1	1.3	-
m	20	19.49	12	1	1.4	П
平均值	ı	1	13	1	1	1

1 5000

.....

V3 (ml): 19.72

F : 1.001

* $R_c = (20 \times 0.05 \times F) \times (V_3 - V_2) \div V_1 \times 1000$

V2:滴定量 (0.05mol/L塩酸) ここに V.1: 分取量

N3:空試験量 (0.05mo]/L塩酸)

F : 0.05mol/L 塩酸ファクター

* Sc=20×n×A÷28.09

にに n:希釈倍率

A : シリカ濃度 (Si mg/L)

一判定基準一

骨材のアルカリシリカ反応性の判定は、測定項目における定量値の平均値を用いて行うものとし、次による。

溶解シリカ(Sc)がアルカリ濃度減少量(Rc)未満となる場合、その骨材を [無害] と判定し、溶解 シリカ量(Sc)がアルカリ濃度減少量(Rc)以上となる場合、その骨材を [無害でない] と判定する。 a) 溶解シリカ量(Sc)が10mmol/し以上で、アルカリ激度減少量(Rc)が100mmol/上未満の範囲では、

b) 溶解シリカ(Sc)が10mmol/L未満で、アルカリ濃度減少量(Rc)が700mmol/L未満の場合、 その骨材を【無害】と判定する。

c)アルカリ濃度減少量(Rc)が700mmol/L以上の場合は判定しない。

アルカリシリカ反応抑制対策

I Q C 試験室長担当者合·否

 令和
 5
 年
 7
 月度

 配合種類
 40 - 70 - 15 (溶融スラグ)

東海商事ブロック工業(株)大野工場

抑制対策の区分			 抑制対策の方法			
a)コンクリート中のアル	A711+			H-mu -b / 4	\	
カリ総量の規制			ルトランドセメントなどを 総量(R _t)が3.0kg/m³			
		$R_t = R_{C+R_a+F}$	S + R _m		(1)	
	ZZIZ,	R _t : コンクリート中の	カアルカリ総量(kg/m³)			
			のセメントに含まれる全アル	カリ量(¹)(kg/r	m³)	
		= 単位セメント	·量(kg/m³)× セメント中	の全アルカリ量	⁽¹) (%) / 100	
		Ra: コンクリート中の	の混和材に含まれる全アル	カリ量(kg/m³)		
		= 単位混和材	量(kg/m³)× 混和材中	の全アルカリ量(¹) (%) / 100	
	Rs: コンクリート中の骨材に含まれる全アルカリ量 (kg/m³) = 単位骨材量 (kg/m³) × 0.53 × 骨材中のNaCl量 (%) / 100					
	Rm: コンクリート中の混和剤に含まれる全アルカリ量 (kg/m³)					
		= 単位混和剤	量(kg/m³)× 混和剤中	の全アルカリ量(1) (%) / 100	
	セメントロ	中の全アルカリ量	(%)	0.	63	
	単位セメ	ント量	(kg/m³)	3	50	
	混和材中	中の全アルカリ量	(%)	0	01	
	単位混和	口材量	(kg/m³)	1	68	
		細骨材)の種類		砕砂	溶融スラグ	
		細骨材)のNaciの量	(%)	0.000	0.005	
		才(細骨材)量	(kg/m³)	561	232	
		中の全アルカリ量	(%)		.3	
	単位混和		(kg/m³)		50	
	コン/フリ-	ート中のアルカリ総量	(kg/m³)	2.	.27	
	-277	. 1	(1.g) /			
	ただし、 いる全で リ量並で	セメント中の全アルカリ量 アルカリの最大値の最もメ バに骨材のNaClの値は、』)Na ₂ O及びK ₂ Oの含有量	: (Ac)の値としては、 直近 にきい値を用いる。 また、 混れ 最新の試験成績表に示され これと等価なNa ₂ O	和材及び混和剤に ている値とする。 の量(Na ₂ Oeq)	含まれる全アルカ	
の 抑制効果のある混合	ただし、 いる全で リ量並で	セメント中の全アルカリ量 アルカリの最大値の最もメ バに骨材のNaClの値は、』)Na ₂ O及びK ₂ Oの含有量	(Ac)の値としては、直近 さい値を用いる。また、混れ 最新の試験成績表に示され	和材及び混和剤に ている値とする。 の量(Na ₂ Oeq)	含まれる全アルカ	
b) 抑制効果のある混合 セメントなどの使用	ただし、 いる全7 リ量並び 注(「	セメント中の全アルカリ量 アルカリの最大値の最もメ バに骨材のNaClの値は、』)Na ₂ O及びK ₂ Oの含有量	(Ac)の値としては、 直近 はさい値を用いる。 また、 混れ 最新の試験成績表に示され の和を、これと等価なNa ₂ O Na ₂ O(%)+ 0.658K ₂ O(%	和材及び混和剤に ている値とする。 の量(Na ₂ Oeq)	含まれる全アルス	
	ただし、 いる全7 リ量並で 注(¹	セメント中の全アルカリ量 アルカリの最大値の最も大 がに骨材のNaClの値は、』) Na ₂ O及びK ₂ Oの含有量 値で、Na ₂ Oeq(%)= 気炉セメントB種	(Ac)の値としては、 直近 はさい値を用いる。 また、 混れ 最新の試験成績表に示され の和を、これと等価なNa ₂ O Na ₂ O(%)+ 0.658K ₂ O(%	和材及び混和剤に ている値とする。 の量(Na ₂ Oeq) ら)とする。 アセメントC種	に換算して表した	
セメントなどの使用	ただし、 いる全7 リ量並で 注(¹	セメント中の全アルカリ量 アルカリの最大値の最も大 がに骨材のNaClの値は、』) Na ₂ O及びK ₂ Oの含有量 値で、Na ₂ Oeq(%)= 気炉セメントB種	: (Ac)の値としては、直近 さい値を用いる。また、混れ 最新の試験成績表に示され の和を、これと等価なNa ₂ O Na ₂ O(%)+0.658K ₂ O(% 2. 高炊	和材及び混和剤に ている値とする。 の量(Na ₂ Oeq) ら)とする。 アセメントC種	に換算して表した	
	ただし、 いる全7 リ量並で 注(¹	セメント中の全アルカリ量 アルカリの最大値の最も大 がに骨材のNaClの値は、。) Na ₂ O及びK ₂ Oの含有量 値で、Na ₂ Oeq(%)= 原炉セメントB種	: (Ac)の値としては、値近 さい値を用いる。また、混れ 最新の試験成績表に示され の和を、これと等価なNa ₂ O Na ₂ O(%)+0.658K ₂ O(% 2. 高炉	和材及び混和剤に ている値とする。 の量(Na ₂ Oeq) ら)とする。 アセメントC種	で会まれる全アルカ に換算して表した	

当工場で行うアルカリシリカ反応抑制対策の区分は(a) b) (i))とする。

JISマーク表示制度

GB0407060 認証番号:

東海商事ブロック工業株式会社 岐阜県大垣市藤江町二丁目 128 番地

産業標準化法第30条第1項の規定に基づき、下記の鉱工業品が主務省令及び日本産業 規格に適合していることを認証します。

温

: プレキャストコンクリート製品 1. 鉱工業品の名称

2. JIS の番号及び名称

JIS A 5371 プレキャスト無筋コンクリート製品 JIS A 5372 プレキャスト鉄筋コンクリート製品

認証の区分 က်

プレキャスト無筋コンクリート製品 I 類 プレキャスト鉄筋コンクリート製品 I 類

: 認証書別紙による 製品の種類又は等級

4.

5

岐阜県揖斐郡大野町本庄字上新田 859 番地1 東海南事ブロック工業株式会社 大野工場 工場の名称及び所在地

2007年8月1日 温 騇

2019年8月7日 再発行日:

井上 理事長

. GB0407060 UL. 늗 温

> 認 艦

Ш : 2007年8月1 П

: 2019年8月7日 Ш 行 Ж 渖

認証に係る製品の種類又は等級

	適	5、地	N a ri	類
品	種類	片、丽、艳	1種	1種、3種
努制に除る政市の施設	製品名	境界ブロック	上ぶた式 U 形側溝 (本体)	落ちふた式び形側端
報	製品の種類	舗装・境界プロック類		路固排水冷瀕
	認能の区分	デレキャスト 無筋コンクリート製品 1 編	ブレキャスト	鉄筋コンクリート製品 1 猫

(様式-3)

溶配スラグコンクリート中の塩化物イオン量測定結果表

令和 5年 7月度

コンクリートの	重類 高流動 - 40.0	- 70 - 15	- N (F 6	記号 C)
測定器具	カンタブ(標準は) 測 定	者 名	三田村 和明
混和剤の種類	チューポール HP-	11混和剤の値	复用量 (kg/m³)	3. 50
セメントの種類	普通ポルトランドセメ	ント単位水	量(kg/m³)	180

時 刻 15:10	
1 7//	
2,4	
カンタブの読み 2 2、4	
3 2.3	
1 0.033	
塩素イオン濃度 2 0.033	
(%) 3 0.029	
平均 0.03	
塩化物量(kg/m³) 0.05	
備考	

注) 塩化物量(kg/m³) = 塩素イオン濃度の3本の平均値 ÷100 ×単位水量(kg/m³)

あいくる材認定証

4 建 企 第 4 9 9 号 令和 5 年 3 月 1 0 日

岐阜県大垣市藤江町二丁目128番地 東海商事ブロック工業株式会社 代表取締役 西田 昌和 様

愛知県知事 大村 秀章

愛知県リサイクル資材評価制度実施要領第11条の規定によって、申請のありました下記資材を認定します。

記

	4) プレキャストコンクリート製品
有 材 名	①落ちふた式U形側溝(本体) 2-⑤-イ (準JIS) ②落ちふた式U形側溝(ふた) 2-⑤-イ (準JIS) ③VS側溝(自由勾配側溝・本体) 2-⑤-カ (準JIS) ④VS側溝(自由勾配側溝・ふた) 2-⑤-カ (準JIS)
法。規格	①1種 300×300×2,000~300×500×2,000 3種 250×250×2,000~500×600×2,000 ②1種 412×55/95×500 3種 362×90×500~622×125×500 ③VS側溝 250×250×2,000~1,500×2,200×2,000 VS側溝隅切用(45°曲り) 250×250×500/686~600×1,500×500/844 VS側溝横断用 250×250×2,000~1,500×2,200×2,000 VS側溝力セットウォール(底版組立式) 本体 250×500×2,000~1,500×2,200×2,000 底版 350×200×1,900~1,300×200×1,900 SVS側溝 250×250×2,000~600×1,500×2,000 SVS側溝(断用 250×250×2,000~600×1,500×2,000 SVS側溝(大空)トウォール(底版組立式) 本体 250×250×2,000~600×1,500×2,000 FVS側溝カセットウォール(底版組立式) 本体 300×600×2,000~600×2,000×2,000 FX側溝 300×300×1,000~300×400×2,000 ④車道用 350×90×500~1,630×180×500 軽荷重用 400×55/95×500~1,630×180×500 車道隅切用(45°曲り) 350×90×271/416~700×140×277/567 SVS側溝ふた 263×80×500~603×125×500 FX側溝ふた 312×85×500

岐阜県リサイクル認定製品認定通知書

申	氏	名	東海商事ブロック工業株式会社
請者	住	所	大垣市藤江町2-128

岐阜県リサイクル認定製品の認定及び利用の推進に関する条例第5条第6項の規定により、下記のとおり岐阜県リサイクル認定製品として認定したので通知します。

記

認	定	番	뭉	174

製 品 名 落ちふた式U形側溝

循環資源名 溶融スラグ

認定期間 令和2年12月1日から令和5年11月30日まで

令和2年12月1日

岐阜県知事 古田 肇

岐阜県リサイクル認定製品認定通知書

申請者	氏	名	東海商事ブロック工業株式会社
	住	所	大垣市藤江町2-128

岐阜県リサイクル認定製品の認定及び利用の推進に関する条例第5条第6項の規定により、下記のとおり岐阜県リサイクル認定製品として認定したので通知します。

記

市公	止 畓	5	175		
				27	
製	口口	名	ベース付歩車道境界ブロック		
循	環資源	[名	溶融スラグ		

認定期間 令和2年12月1日から令和5年11月30日まで

令和2年12月1日

岐阜県知事 古 田 肇

岐阜県リサイクル認定製品認定通知書

申請者	氏	名	東海商事ブロック工業株式会社
	住	所	大垣市藤江町2-128

岐阜県リサイクル認定製品の認定及び利用の推進に関する条例第5条第6項の規定 により、下記のとおり岐阜県リサイクル認定製品として認定したので通知します。

記

認定番号	176
製品名	可変側溝
循環資源名	溶融スラグ
認定期間	令和2年12月1日から令和5年11月30日まで

令和2年12月1日

岐阜県知事 古 田 肇

創造・挑戦・行動 ~今を創り未来を創る~

東海商事ブロック工業株式会社

本 社 〒503-0893 岐阜県大垣市藤江町2丁目128番地

TEL <0584 > 81 - 6325 FAX <0584 > 73 - 7541

大野工場 〒501-0533 企画開発室

岐阜県揖斐郡大野町本庄上新田859-1 TEL < 0585 > 35 - 2031 FAX < 0585 > 35 - 2522

三 重 工 場 〒519-0425 及び営業所

三重県度会郡玉城町岩出333 TEL <0596>58-2300

FAX < 0596 > 58 - 2330